

TED UNIVERSITY

SENG 492_O Senior Project

Team ForeSightAI

MedicalAI

Detailed Design Report

Spring 2025

Submission Date: 15.03.2025

Team Members:

Batuhan Mert ÖZTÜRK, 15308021268, Software Engineering

Ayman MA. HAMDAN, 10582175188, Software Engineering

Rufat NAGHIYEV, 99588787168, Software Engineering

Supervisor:

Asst. Prof. Dr. Venera ADANOVA

Jury Members:

Prof. Dr. Tansel DÖKEROĞLU

PhD. Ali BERKOL

PhD. Fırat AKBA

İçindekiler
1. Introduction .. 4

1.1 Problem Definition .. 4

1.2 Purpose .. 4

1.3 Scope ... 4

1.4 Overview .. 5

1.5 Definitions, Acronyms, and Abbreviations .. 5

1.6 References ... 6

2. System Overview .. 7

2.1 System Objectives .. 7

2.2 System Components & Interactions .. 7

2.3 System Workflow (Data Flow & Interactions) .. 8

3. Design Considerations ... 9

3.1 Assumptions and Dependencies ... 9

3.2 Design Constraints ... 9

3.3 Performance Constraints .. 9

3.4 Reliability ... 10

3.5 Usability ... 10

3.6 Portability & Extensibility ... 10

4. Data Design .. 10

4.1 Data Description ... 10

4.2 Data Dictionary ... 11

4.3 Vectorized Data for Semantic Search in MedicalAI ... 12

5. System Architecture ... 13

5.1 Architectural Design ... 13

5.2 Description of Components .. 14

5.3 Dynamic Behavior ... 14

6. User Interface Design ... 15

6.1 Overview of User Interface .. 15

6.2 Screen Images .. 16

7. Detailed Design .. 18

7.1 Key Components .. 18

7.2 Constraints & Interactions .. 19

8. Libraries and Tools.. 19

8.1 Hardware ... 19

8.2 Software ... 19

9. Time Planning ... 20

10. Conclusion ... 21

1. Introduction

1.1 Problem Definition
In modern healthcare, hospitals face significant overcrowding due to non-critical patients
seeking medical attention. This leads to inefficiencies in resource allocation, longer wait
times, and increased burden on healthcare professionals. Many patients visit hospitals for
minor illnesses that could be managed remotely, reducing the need for in-person
consultations. Conversely, critical patients may experience delays in receiving timely
medical attention due to hospital congestion.

MedicalAI aims to address this issue by developing an AI-powered triaging system that
assists patients in determining whether they need an in-person consultation. By leveraging
Large Language Models (LLMs), the system analyzes patient symptoms, provides
preliminary diagnostic insights, and recommends appropriate healthcare actions.
Additionally, MedicalAI generates reports that doctors can review, enabling them to
validate AI-generated recommendations efficiently. This solution optimizes hospital
workflows, reduces unnecessary patient visits, and ensures that critical cases receive
prioritized attention while maintaining compliance with healthcare regulations.

1.2 Purpose
The purpose of MedicalAI is to create an AI-powered healthcare assistant that enhances
patient-doctor interactions by providing preliminary symptom analysis, diagnostic insights,
and triaging recommendations. By utilizing Large Language Models (LLMs), the system
aims to reduce unnecessary hospital visits, optimize doctors' time, and prioritize critical
cases. This solution supports both patients and healthcare professionals by offering a
mobile application for patients to report symptoms and a web-based platform for doctors
to review AI-generated reports. MedicalAI is designed to function as a decision-support tool
rather than an autonomous diagnostic system, ensuring that final medical decisions
remain under the control of healthcare professionals.

1.3 Scope
MedicalAI encompasses a mobile application for patients and a web-based platform for
doctors, integrated with a Large Language Model (LLM) for symptom analysis and
diagnostic report generation. The system allows patients to input their symptoms via the
mobile app, where the LLM processes the data to provide preliminary recommendations.

Doctors can then access and review these AI-generated reports through the web platform,
modifying or validating the recommendations as needed.

The project ensures secure data handling, compliance with healthcare regulations, and
seamless communication between patients and doctors. It aims to improve efficiency in
medical triaging and diagnosis while reducing unnecessary hospital visits and prioritizing
critical cases.

1.4 Overview
MedicalAI is an AI-powered healthcare assistant designed to enhance medical triaging and
optimize patient-doctor interactions. The system integrates a Large Language Model (LLM)
to analyze patient symptoms, generate preliminary diagnostic reports, and assist doctors
in decision-making.

The solution consists of:

• A mobile application for patients to input symptoms, upload medical documents
and receive preliminary medical guidance.

• A web-based platform for doctors to review AI-generated reports, validate
diagnoses, and provide final medical recommendations.

MedicalAI prioritizes security, compliance with healthcare regulations (e.g., GDPR), and
explainability, ensuring that doctors retain full control over medical decisions. By reducing
unnecessary hospital visits and automating initial diagnosis steps, the system aims to
improve healthcare efficiency and patient outcomes.

1.5 Definitions, Acronyms, and Abbreviations
• AI (Artificial Intelligence): The use of machine learning algorithms and

computational models to mimic human intelligence in decision-making.

• LLM (Large Language Model): An advanced AI model trained on vast datasets to
understand and generate human-like text, used in MedicalAI for symptom analysis
and diagnosis support.

• RAG (Retrieval-Augmented Generation): A technique that enhances AI-generated
responses by retrieving relevant medical documents or knowledge bases.

• Multi-Agent System: A system in which several AI agents cooperate to complete a
challenging task. The multi-agent system used in MedicalAI is made up of

specialized agents that each play a different function in improving medical decision-
making.

• GDPR (General Data Protection Regulation): A European Union regulation that
governs data privacy and protection, ensuring patient data security in MedicalAI.

• HIPAA (Health Insurance Portability and Accountability Act): A U.S. regulation
ensuring the confidentiality and security of healthcare information.

• EHR (Electronic Health Records): Digital medical records that store patient history,
diagnoses, and treatment plans, integrated with MedicalAI for reference.

• UI (User Interface): The visual components of the mobile and web applications that
allow users to interact with MedicalAI.

• API (Application Programming Interface): A set of protocols and tools that allow
different software components to communicate, facilitating MedicalAI's integration
with external systems.

• Cloud Computing: Remote servers used to store and process MedicalAI data
securely, enabling scalability and real-time processing.

• Triage: The process of prioritizing patients based on the severity of their condition, a
key function of MedicalAI.

1.6 References
1. MedicalAI Project Proposal – Provides an overview of the project, including its goals,

objectives, and expected impact.

2. MedicalAI Project Specification Report – Defines the functional and non-functional
requirements, constraints, and system features.

3. MedicalAI Project Analysis Report – Analyzes the problem domain, current
challenges, and proposed AI-based solutions.

4. Health-LLM Personalized Retrieval-Augmented Disease Prediction System. Link

5. IEEE Code of Ethics – Ensures ethical AI implementation in healthcare. Link

6. GDPR Official Guidelines – Reference for data privacy and security compliance. Link

7. HIPAA Compliance Rules – U.S. regulations on patient data protection. Link

8. Relevant Research Papers on AI in Healthcare – Studies on the effectiveness of
LLMs in medical diagnosis and decision support.

https://arxiv.org/html/2402.00746v5
https://www.computer.org/education/code-of-ethics
https://gdpr-info.eu/
https://www.hhs.gov/hipaa/

2. System Overview
MedicalAI is an AI-powered healthcare assistant designed to optimize patient triaging,
reduce unnecessary hospital visits, and enhance doctor efficiency. The system integrates
Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG) to analyze
patient symptoms, generate preliminary diagnostic reports, and assist doctors in decision-
making.

By offering a mobile application for patients and a web-based platform for doctors,
MedicalAI facilitates seamless communication while ensuring data security, compliance,
and explainability.

2.1 System Objectives
• Improve Healthcare Efficiency: Reduce hospital congestion by helping patients

determine if they need in-person consultation.

• Assist Doctors with Decision-Making: Generate preliminary reports to provide
doctors with structured, AI-analyzed patient data.

• Ensure Patient Data Security: Implement role-based access control to protect
sensitive medical data.

• Enhance Accessibility & Usability: Provide a user-friendly mobile app for patients
and an efficient web interface for doctors.

2.2 System Components & Interactions
1. Mobile Application for Patients

• Patients report symptoms in natural language via chat.

• AI asks follow-up questions for better understanding.

• AI generates a preliminary report with possible diagnoses and recommendations.

• Patients receive guidance on whether they need to visit a doctor.

2. Web Application for Doctors

• Doctors log in securely and view patient cases.

• AI-generated reports provide symptom analysis and potential diagnoses.

• Doctors can modify, approve, or reject AI-generated recommendations.

• Doctors can flag critical cases for immediate attention.

• Supports patient record storage, doctor notes, and follow-up management.

3. AI Processing Module (LLM & RAG & Agent-Based Analysis)

• Uses LLMs to analyze text-based symptom descriptions.

• Implements RAG to retrieve relevant medical knowledge for enhanced decision-
making.

• Generates structured diagnostic reports for doctor review.

• Ensures explainability, allowing doctors to understand how AI reached its
conclusions.

4. Secure Database & Cloud Infrastructure

• Stores patient history, chat logs, and reports securely.

• Implements end-to-end encryption & role-based access (GDPR & HIPAA
compliance).

2.3 System Workflow (Data Flow & Interactions)
Step 1: Patient Symptom Input & AI Processing

• Patient submits symptoms via mobile app.

• AI-agents asks clarifying questions based on symptoms.

• AI processes data and generates a preliminary diagnostic report.

Step 2: Doctor Review & Validation

• Doctor logs into the web platform and reviews AI-generated reports.

• The report contains:

o Patient symptoms

o Potential diagnoses

o Suggested next steps (e.g., visit required)

• Doctor can edit or approve the report and send it back to the patient.

3. Design Considerations

3.1 Assumptions and Dependencies

• AI Model Accuracy: The effectiveness of the AI-driven triaging system relies on the
accuracy and reliability of the Large Language Model (LLM). It is assumed that the
model has been worked with multi-agent system and RAG on extensive medical
datasets and will provide clinically relevant insights.

• Database Availability: The system depends on a structured database (PostgreSQL,
MySQL) for patient records and a vector database (Pinecone/FAISS) for AI-driven
searches. Downtime in these databases could impact service delivery.

• Cloud Services: MedicalAI is hosted on a secure cloud environment, ensuring
scalability and availability. It assumes continuous uptime and compliance with
security standards.

• Doctor Validation: The AI-generated reports are not autonomous decisions; they
are subject to review and validation by medical professionals.

3.2 Design Constraints

• Data Privacy & Legal Compliance: The system must adhere to ensuring
encryption, secure authentication, and restricted data access.

• AI Explainability: The model must provide transparent reasoning for its diagnoses
to ensure doctors can understand and trust AI-generated insights.

• Interoperability: MedicalAI must integrate seamlessly with existing hospital
Electronic Health Records (EHR) and API-based medical services.

3.3 Performance Constraints

• Response Time: The AI processing should return preliminary diagnostic reports
within 5 seconds for optimal user experience.

• Scalability: The system should support a high number of concurrent users without
significant performance degradation.

• Concurrent Requests: The infrastructure should handle at least 100,000 API
requests per minute efficiently.

3.4 Reliability

• Failover Mechanisms: Redundant server instances and automatic failover
configurations are implemented to prevent downtime.

3.5 Usability

• User-Friendly Interface: The mobile app for patients should have an intuitive chat-
based interaction, while the web app for doctors should provide structured reports
with editable fields.

3.6 Portability & Extensibility

• Cloud-Based Deployment: Designed for cloud hosting to ensure flexibility and
easier maintenance.

• Future Expansion: The system should allow additional AI models, external data
sources, and new healthcare features to be integrated

4. Data Design

4.1 Data Description
MedicalAI processes various types of medical data to assist doctors in diagnosing diseases
and recommending treatments. The system primarily utilizes three data sources:

1. Medical Records:

o Patient symptoms, past diagnoses, and treatment history.

o Collected from user inputs and stored securely.

o Used for AI-based disease prediction and medical report generation.

2. UMLS Data (Unified Medical Language System):

o A vast database containing standardized medical terminologies.

o Includes diseases, symptoms, treatments, and medical conditions.

o Extracted from sources like SNOMED CT, ICD-10, RxNorm for structured
medical knowledge.

3. AI-Generated Reports:

o Created based on symptom analysis and medical database lookups.

o Summarizes potential diseases, confidence levels, and suggested
treatments.

o Designed to assist doctors in reviewing and validating AI predictions.

Each of these data types plays a crucial role in MedicalAI’s decision-making process,
ensuring accurate and meaningful medical insights.

4.2 Data Dictionary
The MedicalAI database is structured to store and manage medical records, disease

information, and AI-generated reports efficiently. Below is an overview of the primary
database tables and their attributes.

4.2.1 Patients

Column Type Description
patient_id UUID Unique identifier for each

patient.
name String Patient’s full name.
age Integer Patient’s age.
gender Enum Male or Female

 4.2.2 Symptom Analysis

Column Type Description
record_id UUID Unique identifier for each

record.
patient_id UUID Links to the patient table.
symptoms JSON List of reported symptoms.
predicted_disease String AI-predicted disease name.
confidence Float AI confidence level (0-1).

4.2.3 UMLS Data

Column Type Description
cui String Unique Concept Unique

Identifier from UMLS.
name String Name of the disease,

symptom, or treatment.
type Enum Disease, Symptom,

Treatment.
definition Text Standardized medical

description.

 4.2.4 AI-Generated Reports

Column Type Description
report_id UUID Unique identifier for each

report.
patient_id UUID Links to the patient table.
analysis_date DateTime Timestamp of the report.
report

4.3 Vectorized Data for Semantic Search in MedicalAI
MedicalAI utilizes vectorized data to enable fast and accurate semantic search for

disease prediction and medical insights. This approach allows the system to retrieve the
most relevant diseases, symptoms, and treatments from large medical datasets, such
as UMLS, SNOMED CT, and RxNorm.

Vectorized data refers to textual medical information transformed into numerical
embeddings. These embeddings are stored in a vector database (e.g., Pinecone,
Weaviate, or Milvus), allowing for fast similarity search and retrieval-augmented
generation (RAG) in AI-driven medical analysis.

MedicalAI generates vectorized data for:

Diseases & Symptoms → Semantic representation of illnesses and their related
symptoms.
AI Reports & Doctor Notes → Embeddings of past AI-generated reports for personalized
recommendations.
Medical Knowledge Base (UMLS & PubMed) → Vectorized references to medical literature.

Field Type Description
id String(UUID) Unique identifier for each

vector entry.
embedding Array (Float) Numerical vector

representation of the data.
metadata JSON Additional details (disease

name, source, etc.).

5. System Architecture

5.1 Architectural Design

MedicalAI follows a microservices-based architecture that separates key components
into independently deployable units.

High-Level System Architecture:

• Frontend Layer:
o Mobile App (Android Kotlin) for patient interaction. Jetpack compose is used
o Web App (Vue.js) for doctors

• Backend Layer:
o API Gateway (FastAPI) for handling client requests
o Authentication Service (OAuth/JWT for secure login)
o AI Processing Module (LLM & RAG & Agent-based diagnosis generation)
o Data Storage (PostgreSQL or MySQL for structured data, Pinecone or Qdrant

for vector-based searches)
o Logging & Monitoring (ELK Stack for tracking system health)

Figure 1

5.2 Description of Components

1. Mobile App (Android Kotlin) - Allows patients to submit symptoms and receive
preliminary AI insights.

2. Web Platform (Vue.js) - Enables doctors to review and modify AI-generated
reports.

3. AI Processing Module - Handles symptom analysis, retrieval-augmented
generation (RAG), and medical report creation.

4. Database Layer - Stores structured patient records and vectorized medical
knowledge for AI-based retrieval.

5. Security & Compliance Module - Implements end-to-end encryption and role-
based access control.

5.3 Dynamic Behavior

Step 1: Symptom Submission

• Patient submits symptoms through chat-based UI.
• AI asks follow-up questions for clarification.
• AI generates an initial diagnostic report.

Step 2: Doctor Review

• Doctor logs into the web platform and views the AI-generated report.
• Doctor modifies/validates recommendations and finalizes the diagnosis.

Step 3: Patient Follow-Up

• Patients receive notifications for medical actions (e.g., tests, medication
reminders).

• Doctors can track patient progress over time.

Figure 2

6. User Interface Design
In this section, we will describe the User Interface (UI) design of MedicalAI. The

system is divided into two primary interfaces:

• A Mobile Application for Patients → Designed for symptom input, AI-generated
disease reports, and treatment recommendations.

• A Web Application for Doctors → Optimized for managing patient data, reviewing AI
reports, and making medical decisions.

6.1 Overview of User Interface
MedicalAI is structured to provide an intuitive and efficient user experience for both
patients and doctors. The UI follows a clean, minimalistic, and user-friendly design,
ensuring easy navigation and accessibility.

6.1.1 Mobile App for Patients

Mobile app which is written using Jetpack Compose metarial for Kotlin enables patients to
enter symptoms, obtain medical insights, and receive reports created by AI. makes therapy
recommendations in accordance with medical advice. shows past reports so that people
can monitor their health.

6.1.2 Web Interface for Doctors

The web interface of MedicalAI which is written using Vue.js allows medical professionals
to examine patient reports produced by AI, confirm diagnosis, and recommend therapies.
enables illness and treatment searches through the integration of RxNorm and UMLS. uses
a triage system driven by AI to prioritize urgent cases.

6.2 Screen Images
The screenshots we have provided below for MedicalAI are a mockup design. They are
designed to guide us in the design phase of the applications.

Figure 3: MedicalAI Login Page

Figure 5: Home Page

Figure 4: MedicalAI Sıgn In Page

Figure 9: Doctor Dashboard

Figure 6: Chat interface with
MedicalAI agents

Figure 7: Reports

Figure 8: Settings Page

Figure 10: History of Patient

7. Detailed Design

7.1 Key Components
1. LLM Processing

• Uses a fine-tuned transformer model to interpret patient symptoms and retrieve
relevant medical knowledge.

• Implements RAG (Retrieval-Augmented Generation) to fetch supporting medical
literature before generating responses.

2. Report Generation

• AI generates structured medical reports based on symptoms, previous history,
and medical literature.

• Reports include potential diagnoses, risk factors, and suggested next steps.
• Doctors can edit reports before finalizing recommendations.

3. Authentication & Data Security

• User access and authorization levels should be defined but easily adjustable.
• Authentication methods should be adaptable and expandable when needed.
• System security should be continuously monitored and improved against new

threats.

4. Doctor Interaction & Feedback

• Doctors can approve, modify, or reject AI-generated recommendations.
• Doctors can chat MedicalAI for decision-making

7.2 Constraints & Interactions

• AI Limitations: AI cannot diagnose diseases definitively; it serves as a decision-
support tool.

• Doctor Validation Process: The system must enforce manual review by a medical
professional before finalizing reports.

8. Libraries and Tools

8.1 Hardware
MedicalAI consists of a cloud-based backend, a mobile application for patients, and a web
platform for doctors:

• Cloud Backend: Hosts AI processing, data storage, and authentication, ensuring
secure and scalable operations. Docker is used for deployment

• Mobile Application: Runs on Android Kotlin (Jetpack Compose), allowing patients
to input symptoms, and receive AI-generated recommendations.

• Web Platform: Designed for doctors to review AI-generated reports, validate
diagnoses.

8.2 Software
MedicalAI utilizes a combination of backend, frontend, and AI technologies to ensure
smooth operation and security:

• Backend: Built with Python (FastAPI) for handling API requests, user authentication,
and AI processing.

• AI Model: Uses Large Language Models (LLMs) with Retrieval-Augmented
Generation (RAG) for symptom analysis and diagnosis support.

• Agent Framework: Uses CrewAI agent framework to organize and communicate
each agent in order to work together effectively.

• Database: PostgreSQL for structured data, Vector Database (e.g., Pinecone, FAISS)
for AI-driven searches, and Firebase for real-time interactions.

• Mobile Application: Developed in Android Kotlin (Jetpack Compose).

• Web Platform: Built with Vue.js for a responsive interface, integrated with backend
APIs.

9. Time Planning
We have created a time plan for the Medical AI project as shown in the Gantt chart

below. We need to give a long time to collect, process and optimize the use of symptom
analysis data for the agents that we will use in the project. Our goal is to comply with the
time plan made for this comprehensive project.

Figure 11: Gantt Chart for MedicalAI’s Development Timeline

10. Conclusion
By combining vectorized medical information, retrieval-augmented generation

(RAG), and AI-powered disease prediction, medical AI aims to transform medical decision-
making. The system includes a web-based dashboard for physicians that offers AI-assisted
diagnostic, patient management, and prescription capabilities, as well as a mobile
application for patients that allows symptom entry, viewing of AI-generated reports, and
therapy recommendations. MedicalAI ensures quick, precise, and comprehensible AI-
driven healthcare insights by deploying a multi-agent AI system that effectively processes
user inputs, retrieves pertinent medical knowledge, and produces comprehensive reports.

The integration of UMLS, SNOMED CT, and RxNorm allows for real-time knowledge
retrieval, enhancing AI accuracy and reliability. The use of vector databases enables fast
and precise semantic search, improving disease prediction and correlation analysis. These
design decisions collectively aim to empower patients with AI-driven preliminary medical
assessments, enhance doctor’s efficiency by automating initial diagnostics, and advance
AI’s role in healthcare by demonstrating its potential in real-world medical applications.

In the future, MedicalAI can be further enhanced by extending its sources of medical
knowledge to include academic papers, hospital databases, and real-time clinical trial
data. Additionally, by improving models using patient history and contextual health data,
tailored AI recommendations could be put into practice. Future versions might also
incorporate image-based and speech-based diagnostics, enabling AI to interpret voice-
based symptom descriptions and medical images for more thorough evaluations.
MedicalAI has the potential to become a vital tool for patients and medical professionals
alike, bridging the gap between AI-driven insights and human expertise, provided it keeps
up with current developments in AI and healthcare.

